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Overview

A good (free) text on machine learning: Hastie, Tibshirani, Friedman

Machine learning is primarily concerned with efficiently estimating
models that generate good predictions.

ML approaches are often referred to as “black boxes”. There is typically
little-to-no concern for building theories or understanding mechanisms.
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https://web.stanford.edu/~hastie/ElemStatLearn/


Supervised vs unsupervised learning

Most of what we have seen so far could be described as supervised
learning, where there is an explicit distinction between inputs x and
output y . Our goal is to do a good job predicting the output.

Unsupervised learning simply tries to find patterns in the data x without
specifying which variable we care about predicting. Examples: K-means
clustering, mixture models, principal component analysis.
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Loss and Risk

g is a model that maps from inputs to outputs (predictions).

A loss function is a measure of how well a prediction g (xi ) predicts an
outcome yi :

L (yi , g (xi ))

Risk is the expected or average loss of a model:

R̂ (g) = N–1
∑
i

L (yi , g (xi ))

All estimators we’ve considered so far can be understood as mimizing a
notion of risk:

I OLS takes risk to be squared error
I MLE takes risk to be negative (log) likelihood
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Cross-validation

True risk, expectation of risk: R (g) = E (L (y , g (x)))

Empirical risk, risk in sample: R̂ (g) = N–1∑
i L (yi , g (xi ))

When a model is selected to minimize risk, the model’s empirical risk in
the sample used for estimation (training data) will be a biased estimate
of true risk.

Therefore, if we want to make a realistic assessment of how accurate the
model is, we should compute risk in a sample that wasn’t used for
estimation (validation data).
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Model Selection with Cross-Validation

Whatever notion of risk you use and tool you use to minimize it, you
could use one sample for training (estimation) and another for validation.

The risk in the validation sample will be an unbiased estimate of the
estimated model’s risk (cross validation).

We could use cross validation to do model selection!

Rather than dividing our data into one training and one validation
sample, we could use k-fold cross validation.

After selecting our preferred model, we might as well go back and
estimate it with all of the data.

We could also think about trying to estimate what a model’s
out-of-sample fit will be...
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Akaike Information Criterion

Log-likelihood is `` (θ|x), where θ is a candidate parameter vector, and x
is all the data.

The AIC is
2k – 2`` (θ∗|x) ,

where k is the number of parameters. We select the model that yields
the lowest value of the AIC, with θ∗ selected for each model to
maximize the likelihood function.

This is a formal version of Ockham’s Razor: we want to explain the data
well, but we want parsimonious models. But how do we arrive at this
precise formula?

Factor of two is there so that it becomes mean squared error for a
Gaussian model.
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AIC Derivation

Let model by summarized by parameter vector θ

Let risk be negative log likelihood:

–R (θ) = –E (`` (x |θ))

Taylor expansion of true risk (negative expected log likelihood) around
the true parameter vector θ∗:

–R
(
θ̂
)

= E [`` (x |θ∗)] +
(
θ̂ – θ∗

)
E [∇`` (x |θ∗)]

+1
2

(
θ̂ – θ∗

)′
E [∇∇`` (θ∗)]

(
θ̂ – θ∗

)
= E [`` (x |θ∗)] + 1

2

(
θ̂ – θ∗

)′
E [∇∇`` (x |θ∗)]

(
θ̂ – θ∗

)
,

where E [∇`` (θ∗)] = 0 is the identification condition.
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AIC Derivation

Empirical risk:

–R̂
(
θ̂
)

= E
[
N–1∑

i `` (xi |θ∗)
]

+
(
θ̂ – θ∗

)
E
[
N–1∑

i ∇`` (xi |θ∗)
]

+1
2

(
θ̂ – θ∗

)′
E
[
N–1∑

i ∇∇`` (xi |θ∗)
] (
θ̂ – θ∗

)
The first term is just the expected likelihood:

E

[
N–1

∑
i

`` (xi |θ∗)

]
= E [`` (x |θ∗)] .
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AIC Derivation

Empirical risk:

–R̂
(
θ̂
)

= E
[
N–1∑

i `` (xi |θ∗)
]

+
(
θ̂ – θ∗

)
E
[
N–1∑

i ∇`` (xi |θ∗)
]

+1
2

(
θ̂ – θ∗

)′
E
[
N–1∑

i ∇∇`` (xi |θ∗)
] (
θ̂ – θ∗

)
Looking at the second term:∑

i ∇`` (xi |θ∗) =
∑

i

(
∇`` (xi |θ∗) – ∇``

(
xi |θ̂
))

.

Because θ̂ is selected to minimize empirical risk,∑
i

(
∇``

(
xi |θ̂
))

= 0
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AIC Derivation

Empirical risk:

–R̂
(
θ̂
)

= E
[
N–1∑

i `` (xi |θ∗)
]

+
(
θ̂ – θ∗

)
E
[
N–1∑

i ∇`` (xi |θ∗)
]

+1
2

(
θ̂ – θ∗

)′
E
[
N–1∑

i ∇∇`` (xi |θ∗)
] (
θ̂ – θ∗

)
Also, ∑

i

(
∇`` (xi |θ∗) – ∇``

(
xi |θ̂
))
≈
∑
i

∇∇`` (xi |θ∗)
(
θ∗ – θ̂

)

We can use
∑

i ∇∇`` (xi |θ∗)
(
θ∗ – θ̂

)
to substitute for

∑
i ∇`` (xi |θ∗)

in the original expression.
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AIC Derivation

Empirical risk:

–R̂
(
θ̂
)

= E
[
N–1∑

i `` (xi |θ∗)
]

+
(
θ̂ – θ∗

)
E
[
N–1∑

i ∇`` (xi |θ∗)
]

+1
2

(
θ̂ – θ∗

)′
E
[
N–1∑

i ∇∇`` (xi |θ∗)
] (
θ̂ – θ∗

)
The second term becomes (approximately)

–
(
θ̂ – θ∗

)′
E

[
N–1

∑
i

∇∇`` (xi |θ∗)

](
θ̂ – θ∗

)
,

which partially cancels with the third term.
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AIC Derivation

Empirical risk:

–R̂
(
θ̂
)

= E
[
N–1∑

i `` (xi |θ∗)
]

+
(
θ̂ – θ∗

)
E
[
N–1∑

i ∇`` (xi |θ∗)
]

+1
2

(
θ̂ – θ∗

)′
E
[
N–1∑

i ∇∇`` (xi |θ∗)
] (
θ̂ – θ∗

)
We can rewrite this as:

–R̂
(
θ̂
)

= E [`` (x |θ∗)]

– 1
2

(
θ̂ – θ∗

)′
E
[
N–1∑

i ∇∇`` (xi |θ∗)
] (
θ̂ – θ∗

)
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AIC Derivation

–E [∇∇`` (x |θ∗)] equals the Fisher information matrix, typically written
I (θ∗).

Our final expression for expected empirical risk:

–R̂
(
θ̂
)
≈ E [`` (x |θ∗)] +

1

2

(
θ̂ – θ∗

)′
E [I (θ∗)]

(
θ̂ – θ∗

)
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AIC Derivation

True risk:

–R
(
θ̂
)
≈ E [`` (x |θ∗)] –

1

2

(
θ̂ – θ∗

)′
E [I (θ∗)]

(
θ̂ – θ∗

)
Expected empirical risk:

–R̂
(
θ̂
)
≈ E [`` (x |θ∗)] +

1

2

(
θ̂ – θ∗

)′
E [I (θ∗)]

(
θ̂ – θ∗

)
The expected difference between true and empirical risk:

N
(
R
(
θ̂
)

– R̂
(
θ̂
))
≈ N

(
θ̂ – θ∗

)′
E [I (θ∗)]

(
θ̂ – θ∗

)
From the asymptotic distribution of the MLE estimator, this should have
a Chi-squared distribution with degrees of freedom equal to the number
of parameters (k). This has expectation k.
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AIC Derivation

The expected difference between true and empirical risk:

N
(
R
(
θ̂
)

– R̂
(
θ̂
))
≈ N

(
θ̂ – θ∗

)′
E [I (θ∗)]

(
θ̂ – θ∗

)
From the asymptotic distribution of the MLE estimator, this should have
a Chi-squared distribution with degrees of freedom equal to the number
of parameters (k). This has expectation k.

Thus, the empirical risk underestimates the true risk by k , the number
of parameters.

The negative log likelihood (risk) plus number parameters is therefore an
unbiased estimate of the true risk.

This suggests using –
∑

i ``
(
θ̂|xi

)
+ k to select models – by selecting

the model with the lowest value, you’re selecting the model with the
lowest expected true risk. Equivalently, use

AIC ≡ 2k – 2
∑
i

``
(
θ̂|xi

)
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AIC Summary

There’s a good reason to penalize models with lots of parameters; doing
so actually leads to selection of models that make better predictions.

In other words, we want to avoid over-fitting.
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AIC: implementation difficulty

Suppose you have a LOT of x variables that you might include in the
model. You could, in principle, use the AIC to consider a model with
every possible subset of the variables, but that would be computationally
cumbersome.

Some machine learning tools effectively automate this process.

Paul T. Scott NYU Stern Econometrics I Fall 2021 18 / 20



LASSO

The LASSO estimator solves

min
β

{∑
i

(
yi – β′xi

)2}
s.t.

∑
j

|βk | ≤ Kmax

This minimization problem can typically be solved fairly quickly, and
LASSO-based predictions tend to avoid overfitting, much like models
selected with the AIC. Unsurprisingly, it has become quite popular
recently.

Selecting the Kmax parameter is important. The AIC is one way to do
this.
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Decision Trees

Again, suppose you have a LOT of x variables

Choose one of your x variables. Consider splitting the data in two
groups using that variable within each group, set your prediction of y to
minimize risk within each group. Search for the cutoff that minimizes
overall risk.

Within each of the sub-samples created by your first step, choose
another x variable and repeat the procedure. If you repeat this k times,
you have a k-level decision tree.

How to choose which variables to look at for each step in your decision
tree? Random forests make these selections randomly.
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