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Overview

@ A good (free) text on machine learning: Hastie, Tibshirani, Friedman

@ Machine learning is primarily concerned with efficiently estimating
models that generate good predictions.

@ ML approaches are often referred to as “black boxes”. There is typically
little-to-no concern for building theories or understanding mechanisms.
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https://web.stanford.edu/~hastie/ElemStatLearn/

Supervised vs unsupervised learning

@ Most of what we have seen so far could be described as supervised
learning, where there is an explicit distinction between inputs x and
output y. Our goal is to do a good job predicting the output.

@ Unsupervised learning simply tries to find patterns in the data x without
specifying which variable we care about predicting. Examples: K-means
clustering, mixture models, principal component analysis.
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Loss and Risk

@ g is a model that maps from inputs to outputs (predictions).

@ A loss function is a measure of how well a prediction g (x;) predicts an
outcome y;:

L(yi g (xi))
@ Risk is the expected or average loss of a model:

R(g)=nN" Z L(yi g (x7))

@ All estimators we've considered so far can be understood as mimizing a
notion of risk:

» OLS takes risk to be squared error
> MLE takes risk to be negative (log) likelihood
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Cross-validation

@ True risk, expectation of risk: R(g) = E(L(y,g(x)))
o Empirical risk, risk in sample: R (g) = N1 >.iL(yi g (xp))
@ When a model is selected to minimize risk, the model’s empirical risk in

the sample used for estimation (training data) will be a biased estimate
of true risk.

@ Therefore, if we want to make a realistic assessment of how accurate the
model is, we should compute risk in a sample that wasn’t used for
estimation (validation data).
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Model Selection with Cross-Validation

@ Whatever notion of risk you use and tool you use to minimize it, you
could use one sample for training (estimation) and another for validation.

@ The risk in the validation sample will be an unbiased estimate of the
estimated model’s risk (cross validation).

@ We could use cross validation to do model selection!

@ Rather than dividing our data into one training and one validation
sample, we could use k-fold cross validation.

o After selecting our preferred model, we might as well go back and
estimate it with all of the data.

@ We could also think about trying to estimate what a model’s
out-of-sample fit will be...
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Akaike Information Criterion

o Log-likelihood is ¢¢ (6|x), where @ is a candidate parameter vector, and x
is all the data.

o The AIC is
2k =200 (0% |x),

where k is the number of parameters. We select the model that yields
the lowest value of the AIC, with 8* selected for each model to
maximize the likelihood function.

@ This is a formal version of Ockham’s Razor: we want to explain the data
well, but we want parsimonious models. But how do we arrive at this
precise formula?

@ Factor of two is there so that it becomes mean squared error for a
Gaussian model.
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AIC Derivation

@ Let model by summarized by parameter vector 6

o Let risk be negative log likelihood:

~R(0) = —E (¢4 (x]0))

@ Taylor expansion of true risk (negative expected log likelihood) around
the true parameter vector 6*:

R (é)

E [0 (x|67)] + (é—e*) E [Vl (x]6%)]
+3 (é—e*)' E VvV (6%)] (é—e*)
= E[e(xon)] + 3 (0-0°) E[VVee (o) (9-07),

where E [V£(0*)] = 0 is the identification condition.
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AIC Derivation

@ Empirical risk:

R (9) = E[NLY 00 (x10%)] + (é—a*) E [N, Vee (x;]6%)]
+3 (é—e*)/ E[NLY, Ve (x,]6%)] (é—e*)

@ The first term is just the expected likelihood:

E = E[06(x]6%)].

NTED e (xil6%)
i
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AIC Derivation

@ Empirical risk:
R (9) = E[NIY 00(x]0%)] + (é-e*) E N1 vee (xi6%)]
+1 (é—e*)/ E [NT1Y VVee (xi]6%)] (é—e*)

@ Looking at the second term:
SV (x]0F) = 3 (we (x:|0%) - Vit (x,-|9“)) .
Because @ is selected to minimize empirical risk,

3 (wg (x,-yé)) =0

]
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AIC Derivation

@ Empirical risk:

R (9) = E[NIY 00 (x10%)] + (é—e*) E [N, Vee (x;]6%)]
+3 (é—e*)/ E[NLY, Ve (x;]67)] (é—a*)

@ Also,

Y (wg (x;|0%) - Vee <x,-|é)) ~ 3 Vi (x0%) (9* - é)

i i

o We can use ) ; VV/(x;|6%) (9* - HA) to substitute for > ; V20 (x;|0%)
in the original expression.
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AIC Derivation

@ Empirical risk:
R (9) = E[NIY 00(x]0%)] + (é—e*) E[N1Y, ViL (x]6%)]
+3 (9—9*)' E[NLY; Vel (xi]0M)] (0-0°)

@ The second term becomes (approximately)
A / A
- (0—9*) E|NTS wver (x,-|e*)] (0—9*) ,
i

which partially cancels with the third term.
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AIC Derivation

@ Empirical risk:
_R (9) = E[NTY 00 (x16%)] + (é—e*) E[N71 32 Ve (x;167)]
+1 (é—e*)/ E [NLS, Ve (x;]0%)] (é—e*)
@ We can rewrite this as:
-R(8) = Elee(x6")
-3 (0-0°) ENT S, Ve (0] (- 0°)
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AIC Derivation

o —E[VVl(x]0%)] equals the Fisher information matrix, typically written
1(6%).

@ Our final expression for expected empirical risk:

R (9) ~ E[00(x]0%)] + % (é— 9*)' E[1(6%)] (é— 9*)
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AIC Derivation

@ True risk:
A 1 /4 / ~
_ ~ * _ - _N* * _n*
R(a) E[e(x10")]- 5 (9 9) E[1(6")] (9 e)
@ Expected empirical risk:
DA\ ~ * 1 n_ n* ! * 0 _ pn*
R(8) ~ E[ee(xlo )]+§(9 o) El1(07)] (9-0")
@ The expected difference between true and empirical risk:
N oA /A " / "
N (R (0) ~R (9)) ~ N (9—9*) E[I(6%)] (0—9*)
From the asymptotic distribution of the MLE estimator, this should have

a Chi-squared distribution with degrees of freedom equal to the number
of parameters (k). This has expectation k.
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AIC Derivation

@ The expected difference between true and empirical risk:

N (R (9) ~R (9)) ~ N (9—9*)'5[/ (6")] (é—a*)

From the asymptotic distribution of the MLE estimator, this should have
a Chi-squared distribution with degrees of freedom equal to the number
of parameters (k). This has expectation k.

@ Thus, the empirical risk underestimates the true risk by k, the number
of parameters.

@ The negative log likelihood (risk) plus number parameters is therefore an
unbiased estimate of the true risk.

@ This suggests using =), ¢/ (é\x,-) + k to select models — by selecting

the model with the lowest value, you're selecting the model with the
lowest expected true risk. Equivalently, use

AIC = 2k -2 Zi:fz (9|x,-)
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AIC Summary

@ There's a good reason to penalize models with lots of parameters; doing
so actually leads to selection of models that make better predictions.

@ In other words, we want to avoid over-fitting.
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AIC: implementation difficulty

@ Suppose you have a LOT of x variables that you might include in the
model. You could, in principle, use the AIC to consider a model with
every possible subset of the variables, but that would be computationally

cumbersome.

@ Some machine learning tools effectively automate this process.
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LASSO

@ The LASSO estimator solves

min {Z(W‘lei)z} s.t. Z|Bk| < Kmax
J

B ,
i

@ This minimization problem can typically be solved fairly quickly, and
LASSO-based predictions tend to avoid overfitting, much like models
selected with the AIC. Unsurprisingly, it has become quite popular
recently.

@ Selecting the Kmax parameter is important. The AIC is one way to do
this.
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Decision Trees

]

Again, suppose you have a LOT of x variables

Choose one of your x variables. Consider splitting the data in two
groups using that variable within each group, set your prediction of y to
minimize risk within each group. Search for the cutoff that minimizes
overall risk.

Within each of the sub-samples created by your first step, choose
another x variable and repeat the procedure. If you repeat this k times,
you have a k-level decision tree.

How to choose which variables to look at for each step in your decision
tree? Random forests make these selections randomly.
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